

Sagol School of Neuroscience

Department of cognitive neuroscience

How working memory supports programming

and does programming support it back?

By

Lihi Catz
208481119

The thesis was carried out under the supervision of Dr. Dror Dotan

September 2023

Table of contents

1. Introduction 3
1.1. What is working memory?….………..…………….………………………………………….………...…… 3
1.1.1. Which information is stored in WM?... 3
1.1.2. Levels of representation in WM …………….………………….………………..……………………….... 3
1.2. The present study ………………………………….……………………………………………………………... 5

2. Experiment 1 ………………………………………………………………………………………... 6
2.1. Method ………. 6
2.1.1. Participants ……………………………………………………………………………………………………..…….. 6
2.1.2. Stimuli ……. 6
2.1.3. Procedure ……….… 8
2.1.4. Error coding ………. 8

 Accuracy …….. 8
 Error classification …….. 9

2.1.4.2.1. Memory errors ……….. 9
2.1.4.2.2. Calculation errors …….…………….. 10
2.1.4.2.3. Other errors ………. 11

 Statistical analysis ……… 11
2.1.5. Statistical analysis of factors affecting error rates and reaction times …………………… 12
2.2. Results ………. 13
2.2.1. General performance ………..………………………………………………………………………………….. 12
2.2.2. Switch trials are harder ………………………………………………………………………………………….. 13
2.2.3. Error analysis …………………………..……………………………………………………………………………. 13

 Results ………. 14
2.2.4. Selective improvement in variable shifting ……………………………………………………………. 15
2.2.5. The effect of inactivity duration ………..………………………………………………………………….. 16
2.3. Discussion ………. 17

3. Experiment 2 ………………………………………………………………………………………. 18
3.1. Method ……………….………………………………………………………………………………………………. 19
3.1.1. Participants…………………..………………………………………………………………………………………. 19
3.1.2. Stimuli ………………..…………………………………………………………………………………………………. 19
3.1.3. Procedure ……………………………….……………………………………………………………………………. 20
3.1.4. Error coding …….. 20
3.2. Results ……… 21
3.2.1. Selective improvement in variable shift?………………..……………………………….……………. 21
3.2.2. Error types …………………………………………….……………………………………………………………… 21
3.2.3. Long-term improvement ………………………………………………………………………….…………… 22
3.3. Discussion …………………………….……………………………………………………………………………… 23

4. General Discussion ……………………………………………………………………………… 24
4.1. Shifting the Focus of Attention ……………………………………………………………………………. 24
4.2. Training the FOA-shift …………………………………………………………………………………………. 25
4.2.1. Selective improvement in switch trials …………….………………………………………………..…. 25
4.2.2. Failure to replicate the improvement in Experiment 2 …………………………………………. 26
4.2.3. Which type of training is most efficient? ……………………………………….……………………… 27
4.3. The effect of inactivity duration …………………………………………………………………………… 28
4.4. Investigating working memory in the context of a programming task ………………….. 29

5. References …………………………………………………………………………..…………….. 31

1

Abstract

The importance of working memory (WM) in executing mental algorithms is well established, but
we still do not understand the precise bi-directional relations between specific WM processes and
specific aspects of mental algorithms, i.e., how precisely WM impacts the execution of mental
algorithms, and whether and how ‘mental algorithm training’ improves WM. We examined these
issues in two experiments that used a novel task focusing on simple computer programming skills.

We centered on a specific WM mechanism – the “Focus of Attention (FOA)”, the WM region that
contains one information item selected for the current cognitive operation. Previous studies
showed that shifting the FOA from one item to another entails a cognitive cost; here, we
examined how this applies to programming. Participants followed, in their heads, simple code
snippets that set the value of 2-3 variables and then updated them: a series of commands was
presented one at a time, and each command updated the values of a single variable. Similar to
findings from other domains, we found a switch cost: when a command updated a variable
different from the previous command, it took longer, and caused more errors, than commands
without a variable-switch – presumably because of the cost involved in shifting the focus of
attention from one variable to another.

To see the reverse causality, namely how training in the programming task affects WM, we
examined whether and how the participant’s performance improved during the experiment
session. In Experiment 1, the performance (errors, reaction times) improved throughout the
session, and importantly, the improvement was larger in the variable-switch trials than in the no-
switch trials. We conclude that the improvement was not a general improvement in the task, and
not even a general improvement in vaguely-defined WM skills, but it was specifically in the FOA-
shifting mechanism. Experiment 2, which used a similar method in a slightly different
configuration, failed to replicate this finding. We propose that the reason for this discrepancy may
be that specific aspects of the training, which were present in Experiment 1 but not in Experiment
2, may have been critical to the effectiveness of the training; and we suggest how future studies
may use these discrepancies to identify the factors that are critical for effective WM training.

We also found that the variables that were not used in the current trial (“inactive variables”), and
were stored in WM region/s with lower accessibility level than the FOA, were not all stored with
the same accessibility levels. To assess this, we examined how the performance in a particular
variable is affected by its "inactivity duration" – the number of trials elapsed since it was last used.
The performance was poorer in trials with longer inactivity duration, indicating that longer
inactivity reduced the variable’s accessibility level. We discuss the implications of this finding to
our understanding of how the inactive variables are represented in WM.

Overall, the study shows that our novel paradigm can capture the bi-directional causal relations
between specific WM processes and specific aspects of executing programming algorithms
mentally.

2

 ריצקת

 אל ןיידע ונא לבא ,םיבר םירקחמב המגדוהו העודי םיילטנמ םימתירוגלא עוציבב ליעפ ןורכיז לש תובישחה

 לש םייפיצפס םיטביהו םייפיצפס ליעפ ןורכיז יכילהת ןיב םינוויכ-ודה םיסחיה תא קיודמ ןפואב םיניבמ

 קוידב ךיאו םאהו ,םיילטנמ םימתירוגלא עוציב לע עיפשמ ליעפ ןורכיז קוידב דציכ ,רמולכ .םיילטנמ םימתירוגלא

 םייוסינ ינשב וללה םיאשונה תא קדב יחכונה רקחמה .ליעפה ןורכיזה תא רפשמ ילטנמ םתירוגלא עוציבב ןומיא

 .תונכת לש תוטושפ תויונמוימ הנחבש ,ןאכ החתופש ,השדח הלטמ תרזעב

 רחבנש דחא עדימ טירפ ליכמש ליעפה ןורכיזב רוזאה ,"בשקה דקומ" – ליעפ ןורכיז לש יפיצפס ןונגנמב ונזכרתה

 הכורכ רחאל דחא טירפמ בשקה דקומ תרבעהש וארה םימדוק םירקחמ .תיחכונה תיביטינגוקה הלועפה רובע

 ,םיטושפ דוק יעטק רחא םשארב ובקע םיפתתשמה .תונכת לע עיפשמ הז ךיא ונקדב ,ןאכ ;יביטינגוק ״ריחמ״ב

 ,וז רחא וז םיפתתשמל וגצוה תודוקפ לש הרדס :םתוא ונכדע זאו םינתשמ 2-3 לש ךרעה תא ועבק הליחתש

 ״ריחמ״ היהש ונאצמ ,םירחא םימוחתמ םיאצממל המודב .דחא הנתשמ לש ךרעה תא הנכדע הדוקפ לכו

 ,תמדוקה הדוקפב הנתשמהמ הנוש היה תיחכונה הדוקפב הנתשמה רשאכ :)switch cost(הנתשמ תפלחהל

 תולעה ללגב הארנה לככ – הנתשמ תפלחה אלל תודוקפ רשאמ ,תואיגש רתוי הב ויהו ,ןמז רתוי החקל הלועפה

 .רחאל דחא הנתשממ בשקה דקומ תטסהב הכורכה

 ונקדב ,ליעפה ןורכיזה לע עיפשמ תונכתה תלטמב ןומיא דציכ רמולכ ,תויתביסה לש ךופהה ןוויכה תא תוארל ידכ

)הבוגת ינמז ,תואיגש(םיעוציבה ,1 יוסינב .יוסינה שגפמ ךלהמב םיפתתשמה לש םיעוציבה ורפתשה דציכו םאה

 אלל םידעצ תמועל ,הנתשמ תפלחה םע םידעצב רתוי לודג היה רופישה ,ךכמ בושחו ,שגפמה ךרואל ורפתשה

 ותואב יפיצפס רופיש אלא ,ןורכיזה תולוכי לכב אל וליפאו הלטמב יללכ רופיש היה אל רופישהש ונקסה .הפלחה

 חילצה אל ,הנוש טעמ הרוצתב ךא המוד הטישב שמתשהש ,2 יוסינ .בשקה דקומ תא טיסמש ליעפ ןורכיז ןונגנמ

 ,ןומיאה לש םייפיצפס םיטביהש תויהל היושע המאתהה יאל הביסהש םיעיצמ ונא .הזה אצממה תא רזחשל

 םירקחמ דציכ םיעיצמ ונאו ;ןומיאה תוליעיל םייטירק תויהל םייושע ,2 יוסינב אל ךא 1 יוסינב םימייק ויהש

 ןומיאל םייטירקה םימרוגה תא תוהזל ידכ םייוסינה ינש ןיב ונאצמש םירעפ םתואב שמתשהל םילוכי םיידיתע

 .ליעפ ןורכיז לש ליעי ןורכיז

 ןורכיז ירוזאב םירמשנש ,)"םיליעפ אל םינתשמ"(יחכונה דעצב שומיש השענ אל םהב םינתשמהש ונאצמ ,ףסונב

 ,תאז ןוחבל ידכ .תושיגנ תמר התואב םלוכ ונסחוא אל ,בשקה דקומ רוזאמ רתוי הכומנ תושיגנ תמר םע ליעפ

 זאמ ופלחש םידעצה רפסמ – ולש "תוליעפה רסוח ךשמ"מ תעפשומ םיוסמ הנתשמב עוציבה תמר דציכ ונקדב

 ןאכמ ,רתוי ךורא תוליעפ רסוח ךשמ םע םידעצב רתוי םיעורג ויה םיעוציבה .הנתשמ ותואב ןורחאה שומישה

 אצממ לש תוכלשהה תא םיטרפמ ונא ,ןוידב .הנתשמה לש תושיגנה תמר תא תיחפה רתוי ךורא תוליעפ-רסוחש

 .ליעפה ןורכיזב םיליעפ אלה םינתשמה םיגצוימ דציכ ונלש הנבהה לע הז

 םינוויכ-ודה םייתביסה םירשקה תא תוארהל הלוכי ןאכ ונגצהש השדחה המגידרפהש הארמ רקחמה ,םוכיסל

 .תונכת לש ילטנמ םתירוגלא עוציב לש םייפיצפס םיטביה ןיבל םייפיצפס ליעפ ןורכיז יכילהת ןיב

3

1. Introduction

1.1. What is working memory?

1.1.1. Which information is stored in WM?

Working memory (WM) is generally described as a cognitive system that stores information

temporarily and allows to manipulate the information for complex cognitive operations such as

problem solving, learning, executing mental algorithms (as when calculating), reading, etc.

(Baddeley, 1992).

Different researchers proposed different definitions to the concept of WM, reflecting different

theoretical framing of WM (Cowan, 2017). The present investigation relies primarily on

Oberauer's (2002, 2009) definition of WM as a mechanism that provides access to representations

of information for goal-directed processing. WM holds the information most relevant to the

current cognitive task at any moment, and its content changes rapidly: new, relevant information

enters WM, and already-used information, which has become irrelevant, exits WM. To explain

the mechanisms underlying these changes, several researchers (see review in Lewis-Peacock et

al., 2018) argue that once information was coded in the WM, it is retained by default, without the

need for an active processing to maintain it. There is some degree of spontaneous decay, but it is

relatively slow. Thus, no-longer-needed information must be removed actively from WM, so it

can be cleared out in the appropriate pace and "make room" for new, relevant information

(Oberauer, 2020). Formally, removal is defined as the exclusion of information from the working

memory, to accomplish the current goal.

1.1.2. Levels of representation in WM

Oberauer's (2002, 2009) model of WM describes 3 functionally distinct regions, each

characterized by a different level of accessibility to the information retained there. In increasing

order of accessibility, they are the Activated part of the Long-Term Memory (ALTM), the Region

of Direct Access (RDA), and the Focus of Attention (FOA).

Activated Long-Term Memory (ALTM). The long-term memory (LTM) contains representations of

numerous information items connected via a network of associated representations. This

network allows the information items to activate each other and may also be triggered by external

perceptual input. The ALTM is the subset of LTM representations currently activated, which are

4

relevant to the current situation and goal. Of the 3 WM regions, The ALTM has the lowest degree

of accessibility and it can store the largest number of information items.

Region of direct access (RDA). The RDA holds a small number of information items (up to 3-4;

Cowan, 2001) that are accessible for cognitive manipulations by various cognitive processes.

Because of the RDA's limited capacity, the removal-from-WM process (Lewis-Peacock et al., 2018)

is highly relevant here. Information can be (and typically is) removed from the RDA when it

becomes no longer relevant to the current cognitive task. The removed information still remains

in the ALTM; if it becomes relevant again, it will be re-retrieved (Oberauer, 2020).

Each information item in the RDA (e.g., word, object) can be bound to a specific context, or "role".

For example, when calculating 7 - 3, the 7 and the 3 would be bound to the minuend and

subtrahend roles, respectively. Thus, the RDA information items are not an arbitrary set, they can

be integrated into a meaningful structure. The RDA's limited capacity limits the number of roles

to which information items can be bound, and consequently the complexity of the structural

representations that can be created in WM. Moreover, once information items were bound to a

structure, they can remain in this structure even if they are removed to the ALTM; i.e., a

structured group of information items can be retrieved from the ALTM to the RDA as a whole, not

item by item (Oberauer, 2005).

Focus of Attention (FOA). The FOA holds the information item that is the object of the current

cognitive task. This information item has a special status: it can be accessed faster, and often with

higher accuracy, than the information items in the RDA. The FOA typically holds one information

item, but it can also hold more information items simultaneously if they are bound to the same

context/role – i.e., if the task requires simultaneous access to several information items and does

not require binding each of them to a different context. The FOA cannot hold more than one

context-binding simultaneously (Oberauer, 2020).

Changing the contents of the FOA, i.e., shifting the focus of attention from one information item

to another, entail an object-switch cost (Garavan, 1998; Oberauer, 2002) in terms of reaction time

and accuracy. The switch cost is a function of the difficulty of the selection-from-RDA process,

e.g., it increases when there are more information items in the RDA (the selection interpretation;

Oberauer, 2002).

When selecting an information item to be brought to the FOA, all RDA information items are

candidates – a competition that will end with one item being selected. This is called crosstalk

(Oberauer, 2002). The FOA can retrieve information items only from the RDA, i.e., the ALTM is

5

not a part of the crosstalk. To recall an information item from the ALTM, it must first be brought

to the RDA and bound to the structure via which it can be selected to the FOA.

Previous research used various methods to show the existence of FOA. One is the aforementioned

switch cost (Oberauer, 2002). Using a different approach, Garavan (1998) asked participants to

count two types of shapes that appeared on the screen, i.e., the participants had to maintain two

running 'mental counters' simultaneously. He found that the participants could only attend to one

counter at the time: they could not access the two counters in the WM with equal speed. A

different method aimed to show the FOA’s limited capacity (McElree, 2001): participants had to

respond to one item in each trial; when, prior to the response, their attention was focused on one

item, performance was better than when their attention was focused on 3 items simultaneously.

McElree concluded that in the former case, the single item was already in the FOA, whereas in

the latter case the FOA could not hold all 3 attended items.

1.2. The present study
The present study aimed to examine the process of shifting the focus of attention. Specifically,

we had two goals. First, we examined how the FOA-shifting would be exhibited in a simple

computer programming task – a kind of task in which the effect of WM mechanisms was not

tested previously. Specifically, we aimed to capture programming scenarios that entail an FOA

switch cost. Second, we examined the possibility of training the FOA-shifting mechanism. This

could be interesting, because better WM functions may lead to better performance in many tasks,

including perhaps calculating, reading, problem solving, learning etc. Indeed, WM is highly

correlated to measures of fluid intelligence (Yuan et al., 2006).

6

2. Experiment 1

2.1. Method

2.1.1. Participants

There were 32 adults (aged 18-55) with normal or corrected-to-normal vision, Hebrew as native

tongue, and no reported cognitive disorders. All participants reported having a minimal

background in programming – 2-3 university courses. Both experiments 1 and 2 were approved

by the Tel Aviv University Institutional Review Board, and in both the participants were

compensated for participation.

2.1.2. Stimuli

The experiment included 40 Python code snippets, each with 12-17 lines of code. The first lines

initialized the values of a variable (e.g., “b = 5”), subsequent lines updated it (e.g., “b += 3”). The

code snippets appeared on screen one line (command) at a time. We hereby consider each

command as one trial. An exception was the first 2-3 lines in each code snippet, which set the

initial variable value; these lines appeared on screen simultaneously and were not analyzed.

Each code snippet included 2-3 variables, whose value was always numerical and remained

between 1-20 throughout the code snippet. The variable names were consecutive letters (a-b-c,

x-y-z, p-q-r, or g-h-k in different code snippets, counterbalanced).

Code snippet structure. The first trial in each code snippet included 2-3 variable initialization

commands (e.g., “a=3”). The variable values were different from each other, all in the range 4-16.

The 2-3 commands appeared one above the other, in alphabetical order of the variable names.

Next, there were 8-12 update trials, each with a single line of code that updated one of one

variable by adding (e.g., “a += 10”) or subtracting a fixed value (“a -= 5”). The added/subtracted

value was in the range 2-9, and the new value was always in range 1-20. Finally, there were two

print trials, each with one line of code that printed an expression in the form of an inline-if

command that included some of the code snippet’s variables. These two print commands were

not analyzed.

Experimental conditions. We manipulated two factors. First, the number of variables in each code

snippet (2 or 3). Second, the congruency between each update command and the previous update

command: in no-switch trials, the trial updated the same variable as the previous one. In switch

trials, it updated a different variable. The congruency of the first update trial in each code snippet

7

was undefined, so these were excluded from congruency analyses. Below, we use the term

“switch” to indicate the change in the visual stimulus relative to the previous stimulus, and the

term “shift” to indicate the cognitive operation, namely the participant focusing on the mental

representation of a variable different from the previous one. We predicted higher error rates and

longer reaction times in the switch trials compared to the no-switch trials.

Creating the code snippets. To create the 40 code snippets, we created 10 “core code snippets”

and derived 4 variants from each. Each core code snippet had 3 variables. In 4 of the core code

snippets, there were 4 update trials for each variable. We derived 4 variants from each of these

code snippets: two variants in which the update lines were shuffled in random order, resulting in

many switch trials; and two variants in which the trials were grouped by variable (e.g., all updates

of b, then all updates of a, then all updates of c), resulting in many non-switch trials and only a

few switch trials. In 6 additional core code snippets, there were 4 update trials for two of the

variables and 2 update trials for the third variable. From each of these core code snippets, we

created two variants as described above (one variant with many switch trials, one with few switch

trials); and two more variants, again a many-switches one and a few-switches one, in which we

deleted all lines referring to one of the variables (the one with only two update commands),

resulting in a code snippet with only 2 variables.

For each participant, we randomized the order of code snippets and the variable-set assigned to

each specific code snippet (a-b-c, x-y-z, p-q-r, or g-h-k). The order of code snippets was random,

with the limitation that two variants of the same core code snippet were separated by at least 4

other code snippets.

Table 1 shows an example for a code snippet having this structure (for simplicity, this example

has only 5 update commands).

Table 1. Sample code snippet consisting of 6 trials. Like all code snippets, it begins with a trial that
initializes the variables. Next, there is a series of update trials, each of which updates one of the
variables by adding or subtracting a fixed value. The "pre-trial values" column shows the variables
before executing the current trial, assuming that all previous trials were answered correctly.

Trial # Stimulus Correct response Pre-trial values Trial type
0 a = 6

b = 12
c = 3

 Initialization

1 a += 8 14 a = 6, b = 12, c =3 Update
2 b -= 4 8 a = 14, b = 12, c = 3 Update (switch)
3 c += 9 12 a = 14, b = 8, c = 3 Update (switch)
4 a +=4 18 a = 14, b = 8, c = 12 Update (switch)
5 a -= 3 15 a = 18, b = 8, c = 12 Update (no switch)

8

2.1.3. Procedure

The participants were tested individually. The code snippets appeared on screen, one trial at a

time, with no time limit. In the first trial in each code snippet, the variable-initialization trial, the

participant was asked to memorize the variables and their values and hit the spacebar to

continue. In each of the next trials, the participant was to compute the relevant value (the new

variable value in case of an update command, or the printed value in case of a print command)

and press the corresponding key 1-20 on the keyboard (the digits 1-9, the “0” key for 10, and the

keys below them, qwertyuiop, for 11-20). The participant could also respond that the result was

smaller than 1 ('tab' key) or larger than 20 ('[' key) – this was never the case in any code snippet,

but it could happen if the participant made an error. The participants were instructed that if they

made an incorrect response and figured it out only after hitting the response key, they should

continue the mental simulation according to the response that they already made for that

variable.

In some cases, two subsequent update trials were identical. In retrospect we noticed that these

trials caused a confusion, because sometimes the participant thought that the experiment

software did not get their response, so they hit the same response key again. Thus, if the trial was

identical to the previous one, it was excluded from the analyses.

After each code snippet, a separator screen appeared, instructing the participant to hit the

spacebar to start the next code snippet. The participants were allowed to take breaks at this time,

and were instructed by the experimenter to take a forced ~1 min break every few minutes.

2.1.4. Error coding

 Accuracy

The coding of accuracy was in accord with our instruction to the participants that they should not

try to correct errors that they already made. To accommodate this instruction, we considered the

participants’ responses in the previous trials. For example, if the participant gave the incorrect

answer 6 to a trial that updated variable x, we assumed that the value of x was now 6 (until it was

updated again).

If the expected response was within the 1-20 range and the participant responded ‘< 1’ or ‘> 20’,

this was coded as an error. If the expected response was outside the 1-20 range (due to errors

made in previous trials), the trial was excluded from all analyses, because we could not always

tell whether the participant’s response was correct or not. We also excluded trials in which the

9

variable’s pre-trial value was ambiguous (this was the case if the participant responded ‘< 1’ or

‘> 20’ to the previous trial that updated this variable).

 Error classification

To classify errors, we defined 14 specific types of errors, such that each error type predicts a

specific response in each specific situation. For example, one error type was "+1", i.e., adding an

excessive 1 to the calculation. For the trial "x += 8", if the preceding value of x was 2, the correct

response is 10. If a "+1" error had been made, the response would be 11. Note that a trial could

be classified into more than one error type. For example, if the same code snippet included, on

top of variable x, variable y whose current value was 3, the participant’s response also matches

the possibility of a variable-confusion error, namely adding 8 to y instead of to x.

For each error type, we computed the rate of errors that matched this error type out of the trials

in which this error could potentially occur and be detected. For example, the “+1” error cannot

be detected if the expected response is 20, because the response predicted by this error (21)

entails that the participant would respond by pressing the “> 20” key, and the accuracy of that

trial would be ambiguous. Thus, trials whose correct response was 20 were excluded when

computing the percentage of the “+1” error. However, these trials could be included when

computing the percentage of other error types, e.g., the “-1” error, for which we excluded – for a

similar reason – the trials whose correct response was 1.

Below we describe each error type, with an example referring to the code snippet in Table 1. We

also define the criteria for trials in which the error type can potentially occur; the number of these

trials is the denominator in the calculation of the percent of errors of this type. An additional

criterion was that, as explained above, the specific response predicted by the error type must be

within the range 1-20. This criterion applies to all error types, so we do not reiterate it for each

error type.

The 14 error types were grouped to memory errors, calculation errors, and other errors.

2.1.4.2.1 Memory errors

Memory errors cannot occur on the first trial of a code snippet.

Failed to update: the calculation was done on the previous value of the target variable instead of

on its current value. For example, in trial #4 in Table 1 (a += 4), instead of considering a = 14 and

responding 18, the participant would consider a = 6 and respond 10. Relevant trials: this error can

occur only after the variable was updated at least once, i.e., not in the variable’s first update in

the code snippet.

10

Failed to shift: the calculation was not done on the target variable but on the variable that

appeared in the previous trial – i.e., the participant did not shift to this trial’s variable. For

example, in trial 2 (b -= 4), instead of considering b = 12 and responding 8, the participant would

consider a = 14 and respond 10. Relevant trials: switch trials in which the current-trial variable

and the previous-trial variable have different values.

Failed to update & shift: the calculation was done on the previous value of the previous variable.

For example, in trial 2, instead of considering b = 12, the participant would consider a = 6 and

respond 2. In other words, the participant did not shift from a to b, and also erroneously used a’s

pre-trial value. Relevant trials: switch trials that follow a trial with correct response. If the

response of the previous trial was incorrect, the previous trial's pre-trial value is ambiguous.

Incorrect shift: the calculation was done neither on the target variable nor on the variable from

the previous trial, but on the third variable. In other words, the participant did perform a variable-

shift relative to the previous trial, but shifted to the incorrect variable. For example, in trial 4

(a += 4), the participant would neither shift to a = 14 nor stay with c = 12, but would switch to

b = 8 and respond 12. Relevant trials: switch trials in 3-variable code snippets.

Unnecessary shift: in a no-switch trial, the calculation was not done on the target variable but on

a different variable. In other words, the participant performed a variable-shift when this was not

needed. For example, in trial 5 (a -= 3), instead of considering a = 18 and responding 15, the

participant would shift to one of the other variables, e.g., to c = 12, and respond 9. Relevant trials:

no-switch trials. In 3-variable code snippets, in which there were two possible unnecessary shifts,

a trial was deemed irrelevant if either of these shifts predicted a response outside the 1-20 range.

2.1.4.2.2 Calculation errors

+1: the response was larger than the expected response by 1. For example, in trial 3, instead of

responding 12, the participant would respond 13.

-1: the response was smaller than the expected response by 1. For example, in trial 3, instead of

responding 12, the participant would respond 11.

Two additional error types, +10 and -10, were defined similarly.

Incorrect operator: using the incorrect operator, i.e., addition instead of subtraction or vice versa.

For example, in trial 2 (b -= 4), in which the pre-trial value is b = 12, instead of subtracting 4 and

responding 8, the participant would add 4 and respond 16.

Forgotten carry: the calculation required decade crossing and the participant forgot to apply the

carry (or borrow) procedure, i.e., to add/subtract 1 to/from the decade digit. As a result, the

11

response is smaller than the expected response by 10 for additions, and larger by 10 for

subtractions. For example, in trial 3 (c += 9), in which the pre-trial value is c = 3, instead of

responding 12, the participant would respond 2. Relevant trials: trials in which the calculation

involves a decade crossing.

2.1.4.2.3 Other errors

No calculation: the response was the variable’s pre-trial value, without performing any

calculation.	For example, in trial 1, in which the pre-trial value is a = 6, the participant would

respond 6.

Double calculation: the addition or subtraction was applied twice. For example, in trial 5 (a -= 3),

in which the pre-trial value is a = 18, instead of subtracting 3 and responding 15, the participant

would subtract 3 twice, and respond 12.

11 instead of 9: for trials in which the right-hand-side operand is 9, considering 11 instead. For

example, in trial 3 (c += 9), in which the pre-trial value is c = 3, instead of adding 9 and responding

12, the participant would add 11 and respond 14. The idea behind this error is that when the right-

hand-side operand is 9, the calculation may be done in two steps: instead of computing "+ 9" the

participant may compute "+ 10 - 1", and instead of computing "- 9" the participant may compute

"- 10 + 1". The error type reflects a confusion in the flow of this calculation algorithm – executing

"+ 10 + 1" instead of "+ 10 - 1", or "- 10 - 1" instead of "- 10 + 1". We classified this error as "others"

and not as "calculation" because it reflects a mistake in the algorithm rather than in the simple

math, and algorithm-execution errors may have various reasons, including malfunctions in

working memory or in other runtime cognitive processes (Semenza et al., 1997; Zviran-Ginat,

2022). Relevant trials: trials in which the right-hand-side operand is 9.

 Statistical analysis

We compared the rate of errors of each type to the chance level using Fisher's exact test. The

chance probability for each error type is 1/19 – there are 19 possible erroneous answers in each

trial, and each error predicts precisely one response. The only exception to this was the error

"unnecessary shift": for 2-variable code snippets this error predicts one possible response, leading

to a chance probability of 1/19 as explained above, but for 3-variable code snippets it predicts 2

possible responses, leading to a chance probability of 2/19. Thus, for this error type, we analyzed

separately the code snippets with 2 variables and the code snippets with 3 variables.

12

2.1.5. Statistical analysis of factors affecting error rates and reaction times

The error rates were analyzed using logistic linear mixed models (LLMM) with the participant as

a random factor. The fixed factors are described below for each analysis; the important factors

were Switch (yes/no) and the Number of Variables in the code snippet (2 or 3). The reaction times

of correct trials were analyzed with similarly-structured linear mixed models (LMM). To test the

significance of a particular factor, we used a likelihood ratio test that compared the LMM or LLMM

to an (L)LMM that was identical except it did not include the factor in question. We report the 1-

tailed p-value of these comparisons, and the factor's coefficient in the full model (denoted Δ,

because the predictors we used were binary, so the coefficient is close to the difference between

the means of the two conditions).

2.2. Results

2.2.1. General performance

We excluded 2 participants whose error rate was higher than 38.4% (this outlier threshold was

defined as the third quartile plus 150% the interquartile range). After this exclusion, 30

participants remained. For these, 4.7% of the trials had ambiguous accuracy and were excluded

from all analyses. The average error rate in the

remaining trials was 14.3% (SD = 5.9%), and the

average reaction time of the correct trials was

3,263 ms (SD = 840 ms).

The error rates and the reaction times were higher

in the 3-variables code snippets than in the

2-variables code snippets (Fig. 1). To examine this

difference statistically, we entered the accuracy

(correct/incorrect) of each trial as the dependent

variable into a logistic linear mixed model (LLMM)

with the participant as the random factor and the

Number of Variables (2, 3) as a single within-

participant factor. The effect of Number of

Variables was significant (χ2 = 53.8, p < .001, odds

ratio = 1.61). Similar results were obtained when

we used a regular (not logistic) linear mixed model

Figure 1. Error rates (a) and reaction times (b) for
each trial, plotted separately for code snippets with
2 or 3 variables, and for trials with or without
variable-switch. The harder conditions were the
code snippets with 3 variables, and the switch trials.
In these conditions, the error rates were higher and
the reaction times were longer.

13

(LMM) on the reaction times of the correct trials (χ2 = 138.2, p < .001, Δ = 300 ms). To conclude,

remembering more variables is harder.

2.2.2. Switch trials are harder

The main question was whether the switch cost, which was observed in other WM-demanding

tasks (Oberauer, 2002), exists also here, in a programming task. In other words, whether

performance in the "switch trials", in which there was a switch from one variable to another

relative to the previous trial, would be poorer than in no-switch trials. In this and subsequent

analyses, we ignored the first trial in each code snippet, for which the switch / no-switch status is

undefined because there is no preceding trial.

As predicted, there were more errors and longer reaction times in switch trials than in no-switch

trials (Fig. 1). To test this effect statistically, we entered the accuracy (correct / incorrect) of each

trial as the dependent variable into an LLMM, with the participant as the random factor and with

2 within-participant factors: Number of Variables (2, 3) and Switch (yes/no). The effect of Switch

was significant (χ2 = 863.6, p < .001, odds ratio = 2.7), even when we tested separately the

2-variable code snippets (without the Number of Variables factor, χ2 = 35.8, p < .001, odds ratio =

1.61) and the 3-variable code snippets (χ2 = 865.1, p < .001, odds ratio = 3.04). The effect of Switch

was significant also in a similar LMM on the reaction time of the correct trials (χ2 = 653.7, p < .001,

Δ = 570 ms), also when testing separately the 2-variable code snippets (χ2 = 110.5, p < .001,

Δ = 360 ms) and the 3-variable code snippets (χ2= 551.6, p < .001, Δ = 650 ms).

These findings show a clear switch cost: replicating Oberauer (2002), switch trials were harder

than no-switch trials, also in our programming task.

2.2.3. Error analysis

Our interpretation of the results is that the process supporting the variable switch, presumably

shifting the Focus of Attention in working memory, created cognitive load. To further show that

the difficulty in the task was indeed specifically due to shifting the Focus of Attention (FOA), we

analyzed the types of errors made by the participants. If the difficulty was caused by shifting the

FOA, we expect the errors to be typical to shift confusions (for example: shifting to an incorrect

variable), whereas other types of errors – for example, calculation errors – should not be as

frequent.

14

 Results

Figure 2. The rate of errors of each type. The thick line shows the chance level for each error type.
Asterisks denote the comparison to chance level using Fisher’s exact test. The working-memory-related
errors were the most prevalent ones.

Comparing the error rate in each type to the chance level using a Fisher's exact test, the error rate

was significantly higher than chance for 9 of the 15 analyzed error types. These 9 error types

reflect the participants’ real confusions. Importantly, 5 of the 6 memory error types were

significantly higher than chance, but only 2 of the 6 calculation error types (+1, -1), and even these

two were not the most prevalent error types. In addition, when considering only the error types

that were significantly above chance level, 54.4% of all incorrect trials were classifiable as memory

errors, whereas only 36.6% were classifiable as calculation errors. These findings provide

additional evidence to the idea that most errors indeed originated in memory confusions and not

in the calculation process.

An unexpected finding was that the second most common error type was "11 instead of 9" – an

error type that we did not classify as a memory error. This error is unique because it indicates a

confusion in the execution of the algorithm, i.e., in applying the correct sequence of mathematical

operations. However, in retrospect, these errors too may be related to WM. A possible

explanation for the high rate of such errors is that working memory is crucial to follow the correct

sequence of operations in a mental algorithm (Brunyé et al., 2006; Cragg et al., 2017; Hubber et

al., 2014), and these errors too are affected by the working-memory load in this task. Interestingly,

this algorithmic confusion was unique to the case of 9 and 11 (10 ± 1, 21.2% errors); the error rate

was lower for parallel number pairs like 8 and 12 (10 ± 2, 2.6% errors), 7 and 13 (10 ± 3, 10.0%),

6 and 14 (10 ± 4, 9.3%), and others (< 6% errors for each). This may be because people tend to

use the "+10-1" strategy for 9 more than for other numbers, or because the right-hand-side

operand 9, but not operands with smaller values, leads to precisely the same operation (either +1

or -1) in the decade and the unit positions.

15

2.2.4. Selective improvement in variable shifting

The performance improved throughout the session – both the error rates and the reaction times

(Fig. 3). That is, there was a learning effect. There may have been a fatigue effect alongside, but

if such an effect indeed existed – it was smaller.

What precisely was the ability that improved during

the session? The trivial explanation is task-specific

improvement: presumably, when executing any task

for sufficiently long, the performance improves. A

more interesting possibility, however, is a specific

improvement in working-memory. Such an

improvement may affect only the switch trials

because these trials require shifting information in

working memory, whereas the no-switch trials do not

require such a shift.

Supporting this possibility, the decrease in error rate

and reaction time during the session seemed larger in

switch trials than in no-switch trials (Fig. 4). To test

this effect statistically, we entered the accuracy

(correct/incorrect) of each trial as the dependent variable into a LLMM with the participant as the

random factor, and with Code snippet (1-40, numeric) and Switch (yes/no) as within-subject

Figure 3. Average Error rate (a) and reaction times (b) in each code snippet throughout the session. The thick
line shows the data after Gaussian smoothing (σ= 1).

Figure 4. Error rates (a) and reaction times (b)
in each quartile of the experiment session,
plotted separately for switch and no-switch trials.

16

factors. The Code snippet x Switch the interaction was significant (χ2 = 70.3, p < .005, odds ratio =

3.57). Similar results were obtained when we used a LMM on the reaction times of the correct

trials (χ2 = 64.5, p < .01, Δ = 600 ms).

The above analysis of reaction times could be criticized on the grounds that the overall error rates

were extremely different in the two conditions (switch, no-switch). Given such a difference, the

analysis’ null hypothesis, namely that the improvement in the two conditions would be equal

numerically – could be questioned. To address this criticism, we normalized the reaction times to

a common scale by dividing each trial’s reaction time by the condition’s (switch / no-switch) grand

average. We entered the normalized RT as the dependent variable in a LMM with Code snippet

(1-40, numeric), Switch (yes/no), and their interaction as within-subject factors. The interaction

effect was still significant (χ2 = 3.65, p = .006, Δ = 50 ms), confirming that the selective

improvement in switch trials was not a confound of the overall difference in RT between switch

and no-switch trials.

This selective improvement in switch trials, which was larger than in the no-switch trials, indicates

that the origin of the improvement was in a process involved uniquely the switch situation –

presumably, the refocusing on a different variable, i.e., shifting the Focus of Attention in working

memory.

2.2.5. The effect of inactivity duration

Our main hypotheses concerned the variables stored in the Focus of Attention, i.e., the variable

on which the participant performed the calculation in each trial (hereby, the “active variable”).

However, our data can inform also about the WM regions with lower accessibility levels - the

Region of Direct Access and the Activated part of Long-Term-Memory – which presumably store

the currently inactive variables, namely the 1 or 2 variables that do not appear in the present trial.

We asked whether, in 3-variable code snippets, the two currently-inactive variables were stored

in the same accessibility level, and if not – why.

To examine this, we classified the trials according to the variable's inactivity duration – the

number of consecutive trials during which the trial’s variable was inactive before the current trial.

For example, the inactivity duration of no-switch trials is 0. We compared the error rate between

trials with inactivity duration = 2 (i.e., the variable was last used 3 trials ago) and trials with

inactivity duration = 1. We included only 3-variables code snippets in this analysis, because in 2-

variable code snippets the maximal inactivity duration was 1. We excluded the first use of each

variable, for which the inactivity duration is undefined.

17

The error rate in trials with inactivity duration = 2 (35.2%) was higher than in trials with inactivity

duration = 1 (23.8%). To test this effect statistically, we entered accuracy (correct/incorrect) of

each trial as the dependent variable into a LLMM, with the participant as the random factor, and

with Inactivity Duration (1, 2) as a single within-participant factor. The effect was significant (χ2 =

19.6, p < .001, odds ratio = 1.46). Thus, the accessibility level of the currently inactive variables is

not fixed, but it depends on a variable's inactivity duration: higher inactivity duration entails more

errors once the participant needs to bring it to the FOA.

2.3. Discussion
Our findings confirmed the main prediction: switch trials were harder than no-switch trials, both

in terms of error rates and of reaction times. This switch-cost replicates the results of Oberauer

(2002), now in the context of a programming task, and reaffirms his conclusion that shifting the

Focus of Attention (FOA) from one information item to another has a cost. We also extend

Oberauer’s findings in two ways, which provide further support to the conclusion: first, we

observed the switch cost not only in the reaction times but also in the error rates. Second, we

analyzed the error types and we showed that the most common errors were not calculation errors

but memory-related confusions, in particular several kinds of incorrect variable-switching,

supporting the idea that these errors were related to the FOA-switch mechanisms.

We also observed two additional findings, allowing for two additional conclusions. First, the

currently inactive variables were not all stored with the same accessibility level. Rather, the

accessibility level, as reflected in the error rates, was affected by the variable's "inactivity

duration", the number of trials elapsed since a variable was last used, such that longer inactivity

duration entailed more errors. This finding illuminates on the interplay between the Region of

Direct Access (RDA) and the Activated part of Long-Term Memory (ALTM), because it refutes the

possibility that all inactive variables were stored in the RDA, which is supposed to have a fixed

accessibility level (Oberauer, 2002, 2020). We return to this point in the General Discussion.

The second finding was an improvement throughout the session. Critically, this improvement was

larger in switch trials than no-switch trials. We hypothesize that this improvement originates in a

selective training of the variable-shift mechanism in the working memory. Experiment 2 examined

this issue further.

18

3. Experiment 2

Experiment 1 showed a selective improvement in the switch trials. Our interpretation of the task

according to Oberauer’s (2002) working-memory model can readily explain this pattern as an

improvement in the FOA switch mechanism. However, because we did not predict this specific

finding in advance, Experiment 2 was designed to replicate it in slightly different, and more

controlled, experiment setting.

The experiment included 30 code snippets. To examine improvement, we compared the first 5

code snippets in the session (hereby, ‘pre-session’ code snippets) to the last 5 code snippets

(‘post-session’ code snippets; the 20 code snippets in between are the ‘training’ code snippets).

The participants also performed, two days later, a second session with 10 ‘follow-up’ code

snippets, to examine whether the improvement would persist in the long term. The pre-session,

post-session, and follow-up code snippets were balanced in several parameters, detailed below,

to ensure they had comparable degree of difficulty.

There were a few additional differences between Experiment 2 and Experiment 1. First, the range

of valid variable values was not 1-20 but 0-10. The reason was to avoid cross-decade calculations,

which may entail additional working memory operations needed to implement the carry

procedure (Nir, 2023). Second, unlike Experiment 1, in which the participants had to update the

variable value in their memory after each calculation, here the calculation trials did not change

the variable value, i.e., the variables retained their initial value throughout the code snippet. To

encourage the participants to conform to this instruction and return, after each calculation, to

the variable’s pre-trial value, each calculation trial was followed by a “query” trial in which the

participant had to type the pre-trial value. For example, a trial such as “x+4” was followed by a

“x?” trial.

Unlike Experiment 1, here the participants were not instructed to stick to an erroneous response

they gave and to keep using this value in the next trials. Correspondingly, again unlike Experiment

1, the analysis of errors considered each variable's correct value and ignored errors made on

previous trials.

19

3.1. Method

3.1.1. Participants

The participants were 30 adults (aged 18-35) with normal or corrected-to-normal vision and no

reported cognitive disorders.

3.1.2. Stimuli

Types of code snippets. The first session included 30 code snippets. Unknown to the participants,

they were divided into pre-session code snippets (first 5), training code snippets (next 20), and

post-session code snippets (last 5). The order of code snippets was randomized for each

participant, but a particular code snippet being a pre-session, post-session, or training snippet

was the same for all participants. The second session included 10 code snippets, which were

identical to the first session’s pre-session and post-session code snippets, again in random order.

Variables. Each code snippet included 3-4 variables, whose value was in the range 0-10. The

variable names were g-n-x-t, j-b-f-u, p-m-e-k, z-r-h-s in different code snippets, counterbalanced.

The pre-session and post-session code snippet included 4 variables each. We made sure the pre-

session code snippets were similar to the post-session code snippets in terms of initial variable

values (pre-session: M=5, SD=1.7; post-session: M=4.7, SD=2), the calculation's right-hand-side

operand (pre-session: M=0.4, SD=3.5; post-session: M=0.3, SD=3.4), and the calculation operators

(additions in pre-session: 57%; post-session: 55%). The 20 training code snippets had either 3

variables (5 code snippets) or 4 variables. The 10 code snippets of session 2 were identical with

the pre-session and the post-session code snippets, only in different (random) order.

Code snippet structure. Each code snippet included 25 trials. The first trial initialized the variables

to different values in the range 2-8. It was followed by 12 pairs of trials, each pair referring to one

variable (3 pairs per variable in the 4-variable code snippets, and 4 pairs per variable in the 3-

variable code snippets). In each pair, the first trial was a calculation trial, asking to add or subtract

a number to one of the variables (e.g., “a + 10”); and the second (query trial) asked to type the

pre-calculation value of the same variable ("a?"). The purpose of the query trial was to ensure

that the participant would mentally return to the variable's pre-trial value. Because the

calculation trials did not change the variable value, they were presented without the ‘=’ operator

(e.g., “a+4”).

Experimental conditions. We manipulated the congruency between each calculation trial and the

preceding query trial, i.e., whether both referred to the same variable (no-switch trial, 50% of the

20

calculation trials in each code snippet) or not (switch trial). The query trials did not have this

manipulation – they always referred to the same variable as the preceding calculation trial. The

congruency of the first calculation trial in each code snippet was undefined, so this trial was

excluded from the congruency analysis.

3.1.3. Procedure

The procedure was as in Experiment 1, with the participant responding to each trial by typing the

variable value (except the first, variable-initialization trial). However, because the variable values

were now in the range 0-10, the response keys were 1-9, and the keys to their left (“`”) and right

(“0”) for 0 and 10, respectively. As in Experiment 1, “tab” and “[” were used to respond ‘< 0’ and

‘> 10’, respectively (but this was never the correct response).

3.1.4. Error coding

We classified the errors into types as in Experiment 1, but here we used only 8 error types.

Memory errors: Failed to Shift, Incorrect Shift, Unnecessary Shift. The error types "failed to

update" and "failed to shift & update" could not occur here, because there was no variable-

update in this experiment. Relevant trials: as defined in Experiment 1; additionally, trials following

an incorrect query trial were deemed irrelevant.

Calculation errors: +1, -1, Incorrect Operator. The other types of calculation errors could not

occur because they concern cross-decade calculations, which did not occur in this experiment.

Other errors: No Calculation, Double Calculation. The error "11 instead of 9" could not occur here,

because the value range was 0-10.

We compared the rate of errors of each type to chance level using Fisher's Exact test. The chance

probability for each error type is 1/10 – there are 10 possible erroneous answers in each trial, and

each error predicts precisely one response. There were two exceptions to this. First, the chance

level of the "incorrect shift" error type depended on the code snippet: in 3-variable code snippets

this error predicts one possible error, leading to a chance probability of 1/10, but in 4-variable

code snippets it predicts 2 possible responses, leading to a chance probability of 2/10. The second

exception was the error "unnecessary shift": for 3-variable code snippets this error predicts 2

possible responses, leading to a chance probability of 2/10, and for 4-variable code snippets it

predicts 3 possible responses, leading to a chance probability of 3/10. Thus, for these error types,

we analyzed separately the code snippets with 3 variables and the code snippets with 4 variables.

21

3.2. Results
The average error rate in the calculation trials was 22.1% (SD = 15.9%) and the average reaction

time of the correct responses was 2,550 ms (SD = 521 ms). The average error rate of the query

trials was 21% (SD = 16%) and the average reaction time of the correct responses was 665 ms (SD

= 318 ms).

3.2.1. Selective improvement in variable shift?

To examine whether a learning effect occurred here

similar to Experiment 1, we compared the error rates

and reaction times between the pre-session and the

post-session code snippets (Fig. 5). Error rate

decreased from the pre-session to the post-session

trials by 2.8% in the switch trials but by only 0.4% in the

no-switch trials. Reaction times decreased by 380 ms in

the switch trials but by only 220 ms in the no-switch

trials. Thus, the improvement in the switch trials was

numerically larger than the no-switch trials. However,

this effect did not reach significance. We ran an LLMM

on the per-trial accuracy (correct/incorrect) with the

participant as the random factor, and with Time (pre-

session/post-session), Switch (yes/no), and their

interaction as within-participant factors. The Time

effect was not significant (χ2 = 1.25, p = .26), nor was the Time × Switch interaction term (χ2 = 1.01,

p = .31). The Time × Switch interaction was not significant also in a similar LMM on the reaction

times of the correct trials (χ2 = 1.45, p = .22), although the Time effect was significant (χ2 = 21.6,

p < .001, Δ = 144 ms).

In short, contrary to Experiment 1, we did not observe a significantly larger improvement in switch

trials than in no-switch trials.

3.2.2. Error types

As in Experiment 1, we hypothesized that the difficulty in the task originated in the mechanism

supporting variable-switches, in particular, shifting the FOA, and we predicted that this would be

reflected in shift-related memory errors being more frequent than other types of errors.

Figure 5. Error rate (a) and reaction times
(b) in the pre-session and the post-session,
plotted separately for trials with and
without variable-switch.

22

This was indeed the case: the number of errors was significantly higher than chance for 6 of the

10 analyzed error types, and critically, the most prevalent errors were the memory errors. These

findings replicate Experiment 1, and support the idea that the source of most errors is in the FOA-

shifting mechanisms and not in the calculation process.

3.2.3. Long-term improvement

We next examined whether the experiment

created improvement that persisted even two

days later; and whether such putative

improvement was larger in the switch trials (Fig.

7). Comparing the pre-session code snippets (in

session 1) to the follow-up code snippets (session

2), the error rate decreased by 6.2% in switch

trials and by 5.7% in no-switch trials; and the

reaction time decreased by 400 ms in switch trials

and by 300 ms in no-switch trials. An LLMM on the

accuracy (correct/incorrect) of each trial, with the

participant as the random factor and with Time

(pre-session/follow-up), Switch (yes/no), and

their interactions as within-subject factors,

showed a significant improvement (Time effect: χ2 = 0.001, p < .001, odds ratio = 1.22), however,

the Time × Switch interaction was not significant (χ2 = 0.01, p = .97). Similar results were obtained

when we used a LMM on the reaction times of the correct trials (Time effect: χ2 = 46.8, p < .001,

Δ = 176 ms; Time × Switch interaction: χ2 = 1.51, p = .23).

Figure 6. The rate of errors of each type. The thick line shows the chance level of each error type.
Asterisks denote the comparison to chance level using Fisher’s exact test. The working-memory-related
errors were the most prevalent ones.

Figure 7. Error rate (a) and reaction times (b) in
the pre-session and the follow-up, plotted
separately for trials with and without variable-
switch.

23

Thus, there was a long-term improvament in the task performance, however, improvement was

not larger in the switch trials than in the no-switch trials.

3.3. Discussion
Experiment 2 failed to replicate Experiment 1: we did not find larger improvement in the switch

trials than in the no-switch trials – neither at the end of the session nor two days later. Thus, the

experiment did not confirm the main prediction of a selective training of the variable-shift

mechanism in the working memory. Numerically, the results were in the predicted direction, with

numerical difference between the improvement in switch and no-switch trials, both in term of

error rate and reaction times, however, these differences were not significant. Similarly, in the

follow-up testing 2 days later, we observed an improvement relative to the pre-session testing

but no selective improvement specifically in the switch trials compared to the no-switch trials.

Still, we did observe an overall improvement from the pre-session test to the test conducted 2

days later; and we did see more memory errors than other errors, supporting the claim that most

errors resulted from the FOA-shift confusions.

Below, in the General Discussion, we propose possible explanations for the different results

between Experiment 1 and Experiment 2.

24

4. General Discussion

This study examined the process of shifting the Focus of Attention (FOA) in working memory in a

simple programming task, in which the participants tracked in their minds the values of several

variables. In line with the idea that shifting the FOA requires cognitive effort, we observed poorer

performance (switch cost) in trials that required shifting the Focus of Attention. This switch cost

replicates the findings of Oberauer (2002) in the domain of programming; and our analysis of

error types, which showed a prevalence of shift-related errors, extends his finding and further

support the idea of an effortful FOA-shifting. Moreover, our data suggest a possible improvement,

during the session, of the FOA shifting ability. We now elaborate on each of these issues

4.1. Shifting the Focus of Attention
Shifting the Focus of Attention (FOA) from one information item to another in WM requires some

degree of cognitive effort. In our experiments, in which each trial focused on a single variable, this

effort was reflected in the switch cost: switch trials, which involved a variable different from that

of the previous trial, were harder (slower, more errors) than no-switch trials, which involved the

same variable as in the previous trial. Presumably, in the no-switch case, the FOA was already set

on the correct variable because the participant focused on it in the previous trial, but switch trials

required shifting the FOA to a different variable.

This switch cost replicates the findings of Oberauer (2002), who showed a similar switch cost in a

task in which the updated values were not presented as variables in a code snippet but as values

associated with different "slots" in different frames on the screen, or different colors (Oberauer,

2002, 2005). Our data also extends Oberauer’s findings in two ways:

1. Error rate. Oberauer (2002) showed a switch cost in the reaction times; here, we replicated

this effect but we also extended it to error rates: the error rate of switch trials was larger than

the error rate of no-switch trials. This is important for two reasons. First, it shows beyond any

doubt that the difference in rection time was not a matter of speed-accuracy tradeoff. Second,

it demonstrates that in a real-world context, the extra effort imposed by the FOA switching

causes not just slowness, but even mistakes.

2. Error classification. On top of analyzing error rates and reaction times, we also analyzed the

types of errors made by the participant – a method not used in previous studies. Most of the

detectable error types were related to variable-switching: switching to an incorrect variable,

switching to another variable when this was not needed, or failing to switch when this was

25

needed. These switches are precisely the activity driven by the Focus-of-Attention shifting

process. Correspondingly, the switch-related errors presumably reflect a malfunction of this

process – e.g., the selection of an incorrect information item among the information items

competing in the RDA (crosstalk; Oberauer, 2002) or a confusion in carrying out the FOA shift.

This finding strongly supports the idea that switch trials were hard because of the need to shift

the Focus of Attention.

Another finding was that the error rates and reaction times were higher in 3-variable code

snippets than in 2-variable code snippets. This finding is not surprising and could have many

explanations. One possible explanation is that when the RDA includes more candidate

information items from which one will be selected to the FOA, the selection process becomes

harder, requires more time, and slows the completion of the cognitive operation applied on the

selected information item (Oberauer, 2002).

4.2. Training the FOA-shift

4.2.1. Selective improvement in switch trials

Another finding, which was reported here for the first time, is that the participants’ performance

improved during the session, both in the error rates and in the reaction times. Improvement in a

task is not surprising, but importantly, the improvement was larger in the switch trials than in the

no-switch trials. This pattern was observed even when we controlled for the different overall

degrees of difficulty in the two conditions. The selective improvement in switch trials suggests

that the improvement originated in a mechanism that specifically operated in the switch trials –

the FOA shifting.

The possibility of improving WM skills is interesting and was examined in several studies (Melby-

Lervåg & Hulme, 2013). The motivation is clear: WM influences on many cognitive processes, and

WM capacity has been found linked to many skills (Melby-Lervåg & Hulme, 2013), so naturally,

training and improving WM raises much interest. If improving the WM is possible, it could help

having better memory skills, better ability to learn new things easily, to develop cognitively, etc.

Indeed, some researchers have already claimed that the working memory can be improved – for

example, by extending the capacity of the FOA from one information item to four information

items (Verhaeghen et al., 2004). However, a selective improvement of FOA shifting was not

reported previously.

26

4.2.2. Failure to replicate the improvement in Experiment 2

We observed the aforementioned improvement in Experiment 1, in which it was an unexpected

finding. However, Experiment 2 failed to replicate the selective improvement in switch trials,

neither during the session nor in the long term, after 2 days. Although Experiment 2 showed a

larger decrease numerically in the error rate and reaction time in switch trials than in no-switch

trials, this effect was not significant.

Our data cannot point unambiguously at the reason for this discrepancy between the two

experiments. However, there were few methodological differences between Experiment 1 and

Experiment 2, which may explain the different results:

1. Update versus no-update. In Experiment 1, after performing a calculation based on a certain

variable, the participants were to update the variable in their WM to the new value and discard

the pre-trial value. In Experiment 2, the participants still performed a calculation on one

variable in each trial, but they were instructed not to update the variable value in their WM,

but to stick to the pre-trial value. To ensure they do this, we even added a query trial after

each calculation trial, in which the participant was asked about the pre-trial value.

These different instructions entail that slightly different cognitive processes were invoked in

each experiment. First, Experiment 1, but not Experiment 2, involved updating of the

memorized values in WM on each trial. Second, although both experiments required removal

of information from working memory at the end of each trial, the information removed was

different in each experiment: the pre-trial value in Experiment 1, and the calculation result in

Experiment 2. It could be that the selective improvement observed in Experiment 1 was in one

of the processes that operated only in this experiment – e.g., a process related to the updating

of WM.

2. Query trials. These trials, which followed each calculation trial and aimed to refocus the

participant on the pre-trial value, occurred in Experiment 2 but not in Experiment 1. The

existence of query trials may have affected the FOA-shift process. The query trial, by asking

the participants to "return" to the pre-trial value, may help the participants refresh their

memory and "boost" the representation of items stored in WM, consequently improving

recall (Vergauwe et al., 2023). This memory boost may affect the trial’s overall difficulty, the

amount of challenge (and training) imposed by the consecutive switch, and it may even have

different effects on switch and no-switch trials.

27

3. Calculation range. In Experiment 1, the range of correct responses was 1-20, whereas in

Experiment 2, the range was 0-10. The cross-decade calculations, which occurred only in

Experiment 1, may have created additional working memory load and additional shifts in the

FOA (Nir, 2023), and in turn – more WM training. Moreover, the extra load imposes by the

cross-decade calculations may have also encouraged the participants in Experiment 1 to move

information between the RDA and ALTM (if the RDA’s capacity was insufficient) – another kind

of WM shifts.

4. Population. The participants in the two experiments were drawn from different populations:

in Experiment 1, they had minimal knowledge in programming, whereas in Experiment 2 they

did not. These differences may have perhaps affected the participants' learning potential. For

example, it may be that the programming-knowers had higher memory skills, and that such

individuals gain more from cognitive training. A similar “the rich get richer” effect in training is

known from other domains (Stanovich, 2009).

Future studies may use the differences mentioned here, and manipulate each of them separately,

to identify which are the critical factors for effective training of FOA-shifting.

4.2.3. Which type of training is most efficient?

One idea, which was not tested systematically in this study, is that the best way to improve the

FOA shifting process, and consequently the performance in switch trials, is to train the

participants specifically on these trials. We did not run a full experiment to test this idea directly,

however, several pilots we ran failed to obtain this effect. We manipulated the training type

(intensive, with many switch trials, or non-intensive, with few switch trials), but contrary to our

prediction, the intensive training was no better than the non-intensive training in selectively

improving in the switch trials. Our impression was that when a training session included many

hard code snippets (as was the case in the intensive training), the training was too difficult and

hence ineffective. This idea accords with the flow of creativity theory (Nakamura &

Csikszentmihalyi, 2009), a crux of which is the balance between challenge and skill: when a person

performs a task in which both the person’s skill and the challenge imposed by the task are above

average, and they are also balanced one versus the other (relative to that person’s abilities), the

person can operate at full capacity and fully absorb the activity he does. In contrast, if the

challenge and skill are not balanced, e.g., the challenge is too high relative to the skill (as may

have been the case in our pilots), the person become vigilant and anxious, and performance is

poorer.

28

Following this series of pilots we assume that for the training to be effective, it must be well-

balanced at least in two ways. First, in terms of difficulty – not too easy, not too hard. Such

balancing would have to consider, for the very least, the two main factors of difficulty we

observed here: the number of variables and the proportion of switch trials. Second, the training

must also be in the appropriate length – long enough to get sufficient training, but not too long.

It is possible that our experiments were too short; indeed, other working memory improvement

experiments used longer training (Melby-Lervåg & Hulme, 2013).

A related issue concerns not how effective the training is, but how good is our ability to measure

it. In Experiment 2, unlike Experiment 1, if the participants made an error, they were allowed to

self-correct it later. This instruction caused some ambiguity in the interpretation of results and

may have partly masked our ability to observe any training effect. In retrospect, the Experiment

1 method seems better in this sense.

4.3. The effect of inactivity duration
We found the error rate of trials with inactivity duration = 2 (i.e., this variable was last used 3 trials

ago) was higher than trials with inactivity duration = 1 (the variable was used 2 trials ago). This

finding indicates that higher inactivity duration of the variables in the RDA entails more errors

once needed to be brought to the FOA.

This finding illuminates on the interplay between the Region of Direct Access (RDA) and the

Activated part of Long-Term Memory (ALTM). Oberauer (2002, 2020) made two claims concerning

these regions: (a) There are no accidental or unintended ‘drops’ from the RDA to the ALTM – all

information relevant to current goal remain in the RDA, subject to its capacity limit; and (b) all

information items in the RDA have the same accessibility level. The finding of an inactivity

duration effect can therefore have few interpretations.

One possibility is that some items are removed from the RDA because it is overloaded – e.g., the

load imposed by the two inactive variables plus the load imposed by the calculations involved in

cross-decade calculations. Under this view, the inactivity duration effect may reflect that on each

trial, an item has a certain likelihood to be removed from the RDA, and the longer it remains

inactive, this likelihood increases. If this is the case, the inactivity duration effect may be

interesting methodologically – it may be used as a tool to examine which operations load on the

RDA.

A second possibility is that different variables in the RDA have different levels of accessibility. This

is interesting because it shows that some assumptions of Oberauer's model (2002) were incorrect.

29

A third possibility concerns the process via which information items are removed from the RDA

(but remain in the ALTM). Presumably, by default information is retained in the RDA, and it exits

the RDA only via active removal (Lewis-Peacock et al., 2018; Oberauer, 2020). It may be that there

was an active removal, or decay of one of the variables from the RDA, although it was still relevant

to the task, contrary to Oberauer’s (2020) assumptions.

Another issue concerns the extent of inactivity duration. Here, we compared between variables

with activity duration 2 and 1, because there were not enough trials in which the inactivity

duration was longer. Future studies may use a design with longer inactivity durations, presumably

in 3-variables code snippets, to examine if the effect is continuous even in longer inactivity

durations.

The effect of inactivity duration was found in Experiment 1 but not in Experiment 2. The reason

for this may be the different mental processes that the participants were asked to perform. For

example, it may be that Experiment 2 imposed lower WM load, because there were no cross-

decade additions, so there was no need to remove the inactive variables from the RDA. Another

explanation could highlight that in Experiment 2 there was no update of the variables, and the

process of removing the unnecessary value was different from Experiment 1. The presence of

these updates, which intrinsically may involve some removal operation (Lewis-Peacock et al.,

2018), may have increased the likelihood for unnecessary removals of information.

4.4. Investigating working memory in the context of a programming

task
In both experiments, the task we used was a simple programming task. This is important, because

it opens the door to examining the relevance of WM functions to programming, a relatively new

field that has become an important skill in modern society.

To understand these relations, we must first understand which aspect of programming was

examined here. This is not trivial, because “programming” is a very wide concept, which includes

many activities and correspondingly, many cognitive aspects. Very broadly, programming can be

divided into problem solving, i.e., the challenges involved in understanding the problem at hand,

breaking down the problem into smaller units, and designing the algorithm/s that will solve each

unit (Fedorenko et al., 2019); and coding, i.e., the "translation" of the algorithm into a specific

programming language. Traditionally, most research on programming has focused on the

problem-solving aspect of programming. However, programmers spend most of their time on

program comprehension – reading and understanding the existing source code (Minelli et al.,

30

2015), which is more related to coding than to problem solving, and still little is known about

these skills (Ivanova et al., 2020; Siegmund, 2016). The tasks we used here focused on the coding

aspect.

Even coding, and specifically code comprehension (which was the task here), is not a unitary

concept. Code comprehension has two different aspects: knowing/understanding what the

source code means, i.e., “what it does”; and understanding what will happen once that code is

executed. These two things are quite different, similar to how understanding the arithmetic

algorithm of multi-digit addition is not the same as actually computing 45+89 in your head.

Existing studies on code comprehension used different methodological paradigms (Siegmund,

2016), but they almost invariably focused on the “knowing/understanding” aspect. In contrast,

here we examined the participants’ ability to execute code in their heads. We observed the

important role of WM in this task; this is not surprising, and indeed WM plays a central role also

in the execution of mathematical algorithms (Raghubar et al., 2010; Semenza et al., 1997).

Importantly, the present study “connects” computer programming and working memory in a

more precise manner than in the past. Previous studies nicely showed that memory plays a role

in understanding a code program (Siegmund, 2016). Here, we took these findings an additional

step forward, and showed a highly specific working-memory mechanism that might underlie some

of these correlations.

31

References

Baddeley, A. (1992). Working Memory. Science, 255(5044), 556–559. https://doi.org/10.1126/science.1736359
Brunyé, T. T., Taylor, H. A., Rapp, D. N., & Spiro, A. B. (2006). Learning procedures: The role of working memory

in multimedia learning experiences. Applied Cognitive Psychology, 20(7), 917–940.
https://doi.org/10.1002/acp.1236

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity.
Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10.1017/S0140525X01003922

Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review,
24(4), 1158–1170. https://doi.org/10.3758/s13423-016-1191-6

Cragg, L., Richardson, S., Hubber, P. J., Keeble, S., & Gilmore, C. (2017). When is working memory important for
arithmetic? The impact of strategy and age. PLOS ONE, 12(12), e0188693.
https://doi.org/10.1371/journal.pone.0188693

Fedorenko, E., Ivanova, A., Dhamala, R., & Bers, M. U. (2019). The Language of Programming: A Cognitive
Perspective. Trends in Cognitive Sciences, 23(7), 525–528. https://doi.org/10.1016/j.tics.2019.04.010

Garavan, H. (1998). Serial attention within working memory. Memory & Cognition, 26(2), 263–276.
https://doi.org/10.3758/BF03201138

Hubber, P. J., Gilmore, C., & Cragg, L. (2014). The Roles of the Central Executive and Visuospatial Storage in
Mental Arithmetic: A Comparison across Strategies. Quarterly Journal of Experimental Psychology,
67(5), 936–954. https://doi.org/10.1080/17470218.2013.838590

Ivanova, A. A., Srikant, S., Sueoka, Y., Kean, H. H., Dhamala, R., O’Reilly, U.-M., Bers, M. U., & Fedorenko, E.
(2020). Comprehension of computer code relies primarily on domain-general executive brain regions.
eLife, 9, e58906. https://doi.org/10.7554/eLife.58906

Lewis-Peacock, J. A., Kessler, Y., & Oberauer, K. (2018). The removal of information from working memory.
Annals of the New York Academy of Sciences, 1424(1), 33–44. https://doi.org/10.1111/nyas.13714

McElree, B. (2001). Working memory and focal attention. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 27(3), 817–835. https://doi.org/10.1037/0278-7393.27.3.817

Melby-Lervåg, M., & Hulme, C. (2013). Is working memory training effective? A meta-analytic review.
Developmental Psychology, 49(2), 270–291. https://doi.org/10.1037/a0028228

Minelli, R., Mocci, A., & Lanza, M. (2015). I Know What You Did Last Summer—An Investigation of How
Developers Spend Their Time. 2015 IEEE 23rd International Conference on Program Comprehension,
25–35. https://doi.org/10.1109/ICPC.2015.12

Nakamura, J., & Csikszentmihalyi, M. (2009). Flow Theory and Research. In S. J. Lopez & C. R. Snyder (Eds.), The
Oxford Handbook of Positive Psychology (pp. 194–206). Oxford University Press.
https://doi.org/10.1093/oxfordhb/9780195187243.013.0018

Nir, S. (2023). How we perform carry operation, why is it so difficult, and what can be learned from it about
algorithms? Unpublished MA dissertation, Tel Aviv University.

Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of
Experimental Psychology: Learning, Memory, and Cognition, 28(3), 411–421.
https://doi.org/10.1037/0278-7393.28.3.411

Oberauer, K. (2005). Control of the Contents of Working Memory—A Comparison of Two Paradigms and Two
Age Groups. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(4), 714–728.
https://doi.org/10.1037/0278-7393.31.4.714

Oberauer, K. (2020). Towards a Theory of Working Memory: From Metaphors to Mechanisms. In K. Oberauer,
Working Memory (pp. 116–149). Oxford University Press.
https://doi.org/10.1093/oso/9780198842286.003.0005

Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of
developmental, individual difference, and cognitive approaches. Learning and Individual Differences,
20(2), 110–122. https://doi.org/10.1016/j.lindif.2009.10.005

32

Semenza, C., Miceli, L., & Girelli, L. (1997). A Deficit for Arithmetical Procedures: Lack of Knowledge or Lack of
Monitoring? Cortex, 33(3), 483–498. https://doi.org/10.1016/S0010-9452(08)70231-4

Siegmund, J. (2016). Program Comprehension: Past, Present, and Future. 2016 IEEE 23rd International
Conference on Software Analysis, Evolution, and Reengineering (SANER), 13–20.
https://doi.org/10.1109/SANER.2016.35

Stanovich, K. E. (2009). Matthew Effects in Reading: Some Consequences of Individual Differences in the
Acquisition of Literacy. Journal of Education, 189(1–2), 23–55.
https://doi.org/10.1177/0022057409189001-204

Vergauwe, E., Souza, A. S., Langerock, N., & Oberauer, K. (2023). The effect of instructed refreshing on working
memory: Is the memory boost a function of refreshing frequency or refreshing duration? [Preprint].
PsyArXiv. https://doi.org/10.31234/osf.io/6f4jp

Verhaeghen, P., Cerella, J., & Basak, C. (2004). A Working Memory Workout: How to Expand the Focus of Serial
Attention From One to Four Items in 10 Hours or Less. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 30(6), 1322–1337. https://doi.org/10.1037/0278-7393.30.6.1322

Yuan, K., Steedle, J., Shavelson, R., Alonzo, A., & Oppezzo, M. (2006). Working memory, fluid intelligence, and
science learning. Educational Research Review, 1(2), 83–98.
https://doi.org/10.1016/j.edurev.2006.08.005

Zviran-Ginat, S. (2022). How are Calculation Errors Related to Working Memory? Unpublished MA dissertation,
Tel Aviv University.

33

חומה יעדמל לוגס רפסה תיב

םייביטינגוקה חומה יעדמל הקלחמה

 ,תונכתב ךמות ליעפ ןורכיז ךיא
 ?הרזחב וב ךמות תונכת םאהו

תאמ

ץכ יהיל
208481119

 ןתוד רורד ר״ד תייחנהב עצוב רוביחה

2023 רבמטפס

